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Effective Thermal Conductivity in a Radial-Flow
Packed-Bed Reactor1

J. Fuentes,2 F. Pironti,2 and A. L. Lopez de Ramos2,3

In this work a theoretical and experimental study of the heat transfer process in
a radial flow reactor was carried out under steady- and non-steady-state condi-
tions in order to determine the effective thermal conductivity (ke). One of the
mathematical models proposed was a pseudohomogeneous model in which the
effective thermal conductivity varies with radial position. The second model
studied was a two-phase model with different thermal conductivities for gas and
solid. For the pseudohomogeneous model, an analytical solution was obtained
using the method of separation of variables and series approximation. In the
two-phase model, the gas and solid temperature profiles were obtained by two
numerical methods: orthogonal collocation and Runge-Kutta. Several experi-
ments were performed by changing particle diameter, gas flow and temperature
input, and reactor size and time-operation condition: steady and nonsteady.
Theoretical results were compared with experimental data in order to calculate
the effective thermal conductivity. The values of ke agree in general with the
literature data. At low Reynolds numbers there is no appreciable difference
between a pseudohomogeneous model and a two-phase equation model. Con-
stant thermal properties can be used at Re < 5 with enough accuracy to predict
the thermal behavior of a radial-flow reactor.

KEY WORDS: effective thermal conductivity; packed bed; pseudohomoge-
neous model; radial flow.

1. INTRODUCTION

Radial-flow packed-bed reactors are used in certain processes where high
space velocities are required [1]. A complete study of the heat transfer
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through the packed bed of such reactors is important for a better under-
standing and a more efficient design of these units. A precise knowledge of
the effective thermal properties (i.e., effective thermal conductivity, ke) is
necessary in order to perform a stability phenomena analysis in the case of
fixed-bed exothermal reactors.

Several authors have been working in this area. For example, Hlavacek
and Votruba [2] recommended the use of data measured in tubular reactors
for radial flow adopting a logarithmic average radius. Kunii and Smith
[3], Swift [4], Kobayashi [5], Godbee and Ziegler [6], Kuzay [7],
Bauer and Schiinder [8], Jaguaribe and Beasley [9], and Nozad et al.
[10, 11] recommended different methods for the evaluation of the stagnant
effective thermal conductivity (ke°: effective thermal conductivity at zero
velocity). Yagi et al. [12], Kunii and Smith [13], Votruba et al. [14],
Gunn and De Souza [15], and Dixon and Cresswell [16] calculated the
effective thermal conductivity in axial-flow packed-bed reactors using
a steady-state model. Additionally, Juang and Weng [17], Levee and
Carbonell [18], and Dixon and Creswell [19] worked with axial-flow
packed-bed reactors, but under transient conditions. Finally, Votruba and
Hlavacek [20], Pulve et al. [21], Lopez de Ramos and Pironti [22], and
Fuentes et al. [23] studied the heat transfer process in radial-flow packed-
bed reactors using stationary (the first two) and transient models (the last
two references).

The objective of this work was to calculate the effective thermal con-
ductivity using steady state and transient models, assuming that ke depends
on the radial position.

2. EXPERIMENTAL METHODS

The flow diagram of the equipment used (Fig. 1) consists of a radial-
flow reactor placed inside a heat insulated cylinder, a set of valves controll-
ing the cold and hot air entrances to the reactor, and an automatic data
processing system connected to the reactor thermocouple to register tem-
perature changes in the packed bed. The reactor is composed of two
coaxial cylinders of different diameters constructed of stainless-steel sieves,
fixed by means of two disks with concentric grooves cut in them, with
dimensions corresponding to the major and minor circumferences of the
reactor cylinders. A distributing tube, perforated with small, uniformly
spread orifices, is placed along the cylindrical axis to ensure correct radial
flow of air through the packed bed. An electric tubular resistance is placed
inside the distributing tube if the reactor works under steady-state condi-
tions. Temperatures were measured and registered in radial, angular, and
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Fig. 1. Experimental setup. 1, 3: Gate valves. 2, 5, 6, 8, 9, 10: Ball valves. 4:
Rotameter. 7: Electrical heater system. 11: Reactor vessel. 12, 13: Drains. 14: Data
acquisition system. 15: Personal computer.

axial positions (16 ports total). T-type thermocouples (copper-constan-
tant) are placed in a small guide tube, sealing the edge with cement. The
packing material consisted of nonreacting polymer and ceramic particles
with average diameters between 2 x 10-3 and 5 x 10-3 m. The maximum
temperature of the warm air was limited by the melting point of the
polymer; the optimum operation range found experimentally was 50 to
60 °C. The cool air temperature was 23 °C. The bed's axial and angular
symmetry was verified for each experiment. In fact, temperatures varied in
the worst case by 1.5 °C. In the transient case, the temperature of the air
going into the reactor was step-increased. In the steady-state case, the
tubular electric resistance was set using a Variac. The air flow range was
from 6.23 to 9.91 m 3 . h - 1 .

3. MATHEMATICAL MODEL

3.1. Homogeneous Model

Temperature variations inside the bed are analyzed using a pseudo-
homogeneous model that does not make any distinction between solid and



where kf is the thermal conductivity of the fluid, k° is the effective thermal
conductivity for a stagnant fluid, s is a correlation parameter, the Prandtl
number is calculated as Pr = Cp/u/kt, and Re is the Reynolds number
calculated as Re = p fuDp/u.

In Eq. (1) it is assumed that the effective thermal conductivity, ke, is
a function of the radial position through the fluid velocity as stated in
Eqs. (2) and (3):

Then in a radial-flow reactor, the term ru remains constant, but u and
therefore Re are a function of r.

3.1.1. Steady-State Case

The differential equation for the steady-state case is given by Eq. (1)
without the first term. The boundary conditions applied to this problem
were

where <pCp> is the average heat capacity between solid and fluid, T is the
temperature, t is the time, pf is the fluid density, Qpf is the fluid heat
capacity, u is the fluid superficial velocity, r is the radial position, and ke

is the effective thermal conductivity.
Yagi et al. [12] have found experimentally that the effective thermal

conductivity for axial flow in tubular reactors varies linearly with fluid
velocity according to the following expression:

fluid temperature. A differential heat balance for this model is expressed by
an equation such as
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where

The analytical solution of Eq. (1) with the initial and boundary conditions
(6) is

The coefficients aj and bj have the form of

where Pe* is a modified Peclet number given by Pe* = pfurCp/k°e.

3.1.2. Nonsteady Case

Equation (1) is the differential equation for the nonsteady case. The
initial and boundary conditions applied were:

The solution is
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The constants C1i and C2, and Ct can be calculated using the following
expressions:

where

The eigenvalues A, are calculated as the positive roots of the following
equation:

where

3.2. Two-Phase Model

Temperature variations inside the bed can be analyzed using a two-
phase model that makes a distinction between solid and fluid temperature.
A differential heat balance for this model is expressed by the equations

where kaf is the axial fluid-phase effective thermal conductivity, krs is the
solid-phase effective thermal conductivity, and h is the fluid-solid heat
transfer coefficient.
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The initial and boundary conditions for this model are

The correlation reported by Zehner and Schliinder [24] was used to
calculate the solid-phase effective thermal conductivity, krs. This conduc-
tivity is assumed constant with position:

To calculate the fluid-phase effective thermal conductivity, kaf, the correla-
tion proposed by Edwards and Richardson [25] was used. In this case, kaf

is a function of the position through the fluid velocity:

The fluid-solid heat transfer coefficient, h, was calculated by Stuke's
correlation [26] that assumed h as a function of the Reynolds number.

An analytical solution for this coupled system of nonlinear partial dif-
ferential equations may be difficult to find, so an orthogonal collocation
method (with 11 collocation points) was chosen combined with a Runge-
Kutta method in order to obtain the corresponding temperature profiles.

4. RESULTS AND DISCUSSION

Figure 2 shows a typical temperature response for the nonsteady case
after the temperature of the air was step-increased from T0 = 23°C to
T1 = 66 °C. The top line corresponds to the gas entrance temperature, close
to a perfect step temperature input. Initially the bed responds slowly to the
change of temperature, and after 3 h, the temperature inside the reactor
was almost uniform and constant. For this reason, it was necessary to
introduce an electric heater inside the reactor to study its thermal behavior
under steady-state conditions.

Figure 3 shows three radial temperature profiles for the steady-state
case. The radial reactor used has a R2 /R1 ratio equal to 6, a particle



Fig. 3. Radial temperature profile for the steady-state case. Ratio R 2 /R 1 =6;
particle diameter = 3.3 mm; gas input flows = 8.5, 13.8, and 1 6 . 3 m 3 . h - 1 .

Fig. 2. Temperature response for the nonsteady case after a temperature air step
from T0 = 23°C to T1=66°C. Ratio R 2 /R 1 =4; particle diameter = 4.2 mm; gas
input f low= 19.51 m 3 - h - 1 .
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diameter of 3.3 mm, and gas input flows of 8.5, 13.8 and 16.3 m3 • h-1. The
dotted lines represent the theoretical values obtained using Eq. (4). The
value of S adjusted for all steady-state experiments was 5. An acceptable
agreement between experimental and theoretical values is observed. This
behavior was found in all the experiments performed under different
operating conditions.

Figure 4 contains all the ke values calculated in this work for the
steady state. For all the steady-state cases, the value of d that best fit the
temperature profile is 5 (in the range of Reynolds numbers studied). This
value is one order of magnitude higher than the value reported by Yagi et
al. [12] for axial flow in tubular reactors. As expected, the variation of ke

as a function of RePr was linear [Eq. (2)].
Figure 5 shows the Peclet number values as a function of the Reynolds

number including others experimental results reported previously, indicat-
ing good agreement. It can be observed that non-steady-state experimental
values are similar to those calculated under steady-state conditions. This
behavior agrees with the result obtained by Dixon and Cresswell [19] for
the axial flow reactors at small Reynolds numbers. Then the effective
parameter (ke) can be considered the same for steady-state and transient
models for the radial-flow packed-bed reactors at Reynolds numbers less
than 5.

The temperature response for a reactor with a ratio R2/R1 equal to 6
for Pe* = 714 is shown in Fig. 6. The dimensionless temperatures were
calculated using Eq. (6) and the numerical solution of Eqs. (9) and (13).

Fig. 4. ke as a function of RePr using the steady-state model.



Fig. 6. Temperature response for Pe* = 714, R 2 / R 1 = 6 , and particle
diameter = 4.2 mm for a nonsteady method.

Fig. 5. PeH as a function of Re for the steady-state and transient models.

There is an acceptable concordance between the pseudohomogeneous and
the two-phase models for low Reynolds numbers. The pseudohomogeneous
temperature profile is located between the solutions for solid- and gas-
phase profiles. However, for high Reynolds numbers, a large difference is
observed between the corresponding profiles, indicating disagreement
between the two models, A pseudo-homogeneous equation can be used
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Fig. 7. Influence of s values in temperature responses,

instead of the two-phase equations for low Reynolds numbers, but it is not
recommended for high Reynolds numbers.

Figure 7 shows a case where the effective thermal conductivity can be
approximated by a constant along the reactor bed for radial flow. In this
case the dimensionless temperature is almost the same when 8 goes from 0
to 0.75 for low modified Peclet number (around 4). Nevertheless, for a Pe*
equal to 40 the difference between taking ke constant and variable is signifi-
cant. Then it is possible to simplify the model to one with ke constant at
low Reynolds (Pe*) numbers and use the analytical solution found by
Lopez de Ramos and Pironti [22].

5. CONCLUSIONS

For the pseudohomogeneous model, an analytical solution was obtained
using the method of separation of variables and a series approximation. In
the two-phase model, the gas and solid temperature profiles were obtained
by two numerical methods: orthogonal collocation and Runge-Kutta.
Theoretical results were compared with experimental data in order to
calculate the effective thermal conductivity. The values of ke agree in
general with the literature data.

At low Reynolds numbers there is no appreciable difference between a
pseudohomogeneous model and a two-phase equation model. Constant
thermal properties can be used at Re < 5 with enough accuracy to predict
the thermal behavior of a radial-flow reactor. Furthermore, there was no
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difference between steady-state and transient methods for experimental
determination of the effective thermal conductivity at low Reynolds num-
bers. At high Reynolds numbers it is recommended that a two-phase model
with a variable fluid-phase effective thermal conductivity is used.
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